Con referencia a la Geometría en el marco del programa escolar vigente: «Se propone un enfoque didáctico que enfatice la construcción de significados a través de la problematización del conocimiento geométrico» (ANEP. CEP, 2009:66). Es en este sentido que se focaliza en un tipo de
actividades, las construcciones, para explorar, elaborar conjeturas, extraer conclusiones y favorecer el desarrollo de relaciones con las propiedades de los objetos geométricos estudiados.
También será necesario, a lo largo del ciclo escolar, introducir otro tipo de actividades que exijan nuevos modos de hacer por parte del alumno. Así,
las actividades de reproducir y reconocer, las que favorecen la identificación de propiedades, las de descripción, las que ponen el foco en la explicación y
en la fundamentación con ideas matemáticas serán otras puertas de entrada a la conceptualización de estos entes ideales que se constituyen en el objeto de estudio de la Geometría.
Es justamente esta característica de la disciplina la que exige la coordinación y la interacción entre los distintos registros de representación semiótica.
De acuerdo a lo explicitado por Agrasar y Chemello (2016), la secuencia como organizador didáctico debe habilitar al alumno al establecimiento de una red de relaciones en torno a un contenido matemático, en nuestro caso, geométrico. Las autoras plantean que el diseño de secuencias con unidad de sentido implica un conjunto de problemas que se vinculan con relación a la enseñanza de un contenido. Para ello es necesario pensar
en un propósito que oriente la elección y vaya conectando las actividades en un recorrido que pueda ser claramente especificado en términos de
lo enseñado y lo aprendido.