Madonado 1170 - Montevideo, Uruguay
Tel.: (598) 2901 3987   Fax: (598) 2900 0582

El presente artículo refiere al trabajo en quinto y sexto grado; haremos foco en el proceso de validación en matemática. Abordaremos
la validación desde el trabajo geométrico, en particular con figuras del espacio. Las actividades que se presentan atienden distintos tipos
de representaciones de figuras del espacio y algunas propiedades de prismas rectos, oblicuos y pirámides.
Al recorrer estas actividades pretendemos identificar las propiedades de esas figuras que están en juego. También se tiene como objetivo establecer un cierto conjunto mínimo de características que definan a las figuras del espacio con las que estamos trabajando.
A su vez, la idea es que a medida que realicen las actividades, los alumnos puedan establecer argumentaciones con el fin de validar su
trabajo, ya sea a través de descripciones, explicaciones o distintos tipos de pruebas. Asumimos que el trabajo con la validación en matemática
ayuda a desarrollar un alumno autónomo en relación al hacer matemático.

Publicado en Revista 133

Cuando enseñamos geometría en la escuela, uno de los objetivos que buscamos es que los alumnos reconozcan las propiedades de las figuras
partiendo de lo que ya conocen. Aun los más pequeños, al decir “porque tiene tres rayitas” para caracterizar, o “este tiene cuatro puntitos
y no tres como ese” para clasificar, están haciendo referencia a características de figuras como los triángulos o los cuadriláteros.

Los docentes debemos tratar de ampliar la mirada de los alumnos y su percepción, guiando su pensamiento hacia propiedades «no tan visibles» (Broitman e Itzcovich, 2005:7) que les servirán para construir nociones geométricas. Ese modo de concebir la enseñanza donde las actividades deben ser un desafío, deben producir un conocimiento, llevará a nuestros alumnos a establecer nuevas relaciones entre las figuras que estamos estudiando. Para dar sus respuestas, los alumnos se deberán apoyar en las propiedades de las figuras, lo que les permitirá acercarse desde un pensamiento propiamente geométrico y validar, o no, lo realizado.

 

Publicado en Revista 133

Los niños ingresan a primer grado con conocimientos acerca de las figuras geométricas.
Pero ¿esto responde a una construcción de un concepto desde las propiedades de las figuras o a la memorización producto de una enseñanza
ostensiva y nominalista? Cuando les presentamos un cuadrado, un rombo, un trapecio, nos dicen que todos “tienen cuatro líneas y cuatro
puntas”.
Nombrar las figuras y sus características generales, como el número de lados, no es un problema para nuestros alumnos.
Es nuestro objetivo de enseñanza que esos conocimientos avancen hacia la conceptualización de esas y otras características de las
figuras.
Entendemos que en matemática, los aprendizajes se producen al enfrentar a los alumnos a problemas; verdaderos desafíos que impliquen
poner en juego lo que saben para movilizar certezas y promover avances.

A la hora de planificar, el docente debe tener en cuenta qué representará un problema para sus alumnos. Si pedimos a los niños de este nivel
que identifiquen por su nombre figuras que ya conocen y las presentamos en la posición habitual, probablemente esto no representará un
problema. Pero sí podemos plantear situaciones que les permitan reconocer ciertas características y establecer algunas relaciones.

Publicado en Revista 133
Miércoles, 26 Diciembre 2018 18:20

Un viaje geométrico

Este trabajo es una producción colectiva, que se desarrolló en el marco de una propuesta coordinada y colaborativa de las maestras que forman el equipo de Nivel Inicial de la Escuela Nº 14 “José de San Martín”. Es uno de los tantos proyectos que surgen del camino compartido.
En este caso, la propuesta de trabajo se gestó a partir de una salida didáctica.

Se desarrolló una unidad, pero a los efectos de este artículo, seleccionamos únicamente los contenidos y actividades específicos de geometría, presentándolos en forma de secuencia didáctica no como una sumatoria de actividades, sino como actividades que guardan coherencia entre sí y permiten una profundización y complejización, habilitando diferentes modos de acercamiento a los contenidos.

Publicado en Revista 133

La Geometría ha ocupado un lugar en todos los programas escolares de nuestro país, evidenciando un gran poder de supervivencia. Esto lleva a pensar que en el ámbito educativo y en el ámbito social se le ha otorgado cierto valor. ¿En qué radica ese valor? Diferentes autores mencionan
algunas cuestiones de carácter general y otras específicas de la Geometría.

Broitman e Itzcovich (2003:300) afirman: «Una de las razones principales por las cuales es importante la enseñanza de la geometría es porque la escuela es también un lugar de creación y transmisión de cultura. Y la geometría forma parte de ella». Para después agregar que introduce «en un modo de pensar propio del saber geométrico» (idem, p. 301).

Este artículo se centra en uno de los argumentos más generalizados y aceptados a favor de la inclusión de la Geometría en el ciclo escolar: la introducción en una forma de pensar propia de la Geometría.

Publicado en Revista 133

El tema central de la presente edición de nuestra revista está dedicado a la Matemática. Nuestro Equipo de Investigación e Innovación en Enseñanza de la Matemática tomó la decisión de profundizar en Geometría, dado que es un área dentro de la disciplina, que constituye
una preocupación a la hora de planificar su enseñanza.

Publicado en Revista 133

Adaptación del trabajo presentado en II Jornadas Latinoamericanas de Investigadores en Formación en Educación. Instituto de Investigaciones en Ciencias de la Educación (IICE), Facultad de Filosofía y Letras, Universidad de Buenos Aires (UBA), 25-27 de noviembre de 2014.

Leer y escribir en Matemática son partes constitutivas del hacer de la propia disciplina. Exige interactuar con variadas representaciones semióticas de los objetos matemáticos. Según Duval (1999), estas juegan un papel fundamental en la actividad cognitiva que exige el trabajo matemático. El dominio de estas representaciones posiciona al alumno en un lugar de mayor autonomía y le aporta instrumentos que le permiten un mejor control de su quehacer.
En este sentido parece relevante reflexionar respecto a cuál es el lugar que le da el docente de la Escuela Primaria a la lectura y a la escritura matemática en su proyecto de enseñanza. Cabe preguntarse, además, si las propuestas que son presentadas en las aulas habilitan al alumno al trabajo con las diversas representaciones semióticas de un objeto matemático.

Publicado en Revista 131

Cuando examinamos la enseñanza de la matemática resulta evidente la preponderancia de la transmisión de una serie de pasos para resolver
diferentes ejercicios, donde se prioriza el resultado, la respuesta correcta que, desde nuestro punto de vista, es importante pero no suficiente
para aprender matemática.
Parecería que los algoritmos son la puerta de entrada a los contenidos matemáticos. Si consideramos que: «Hacer matemáticas es
un trabajo del pensamiento que construye los conceptos para resolver problemas, que plantea nuevos problemas a partir de conceptos así
construidos, que rectifica los conceptos para resolver problemas nuevos, que generaliza y unifica poco a poco los conceptos en los universos
matemáticos que se articulan entre ellos, se estructuran, se desestructuran y se reestructuran sin cesar» (Charlot, 1986), los algoritmos conforman una pequeña parte del aprendizaje de la matemática en la escuela, y la potencialidad de ellos radica en poder establecer relaciones y entender su funcionamiento en relación a las razones matemáticas que los sustentan.

La enseñanza de los algoritmos no solo implica saber el mecanismo, sino establecer las relaciones internas, su funcionamiento así como otros aspectos que son esenciales para la construcción del sentido de las operaciones.

Publicado en Revista 130
Domingo, 02 Septiembre 2018 14:53

Dos viejas conocidas: la mediatriz y la bisectriz

En un artículo anterior señalábamos la presencia de las construcciones geométricas en la escuela y el lugar de las mismas en la construcción
de los conocimientos geométricos.
Allí destacábamos que «…adquieren un rol fundamental en la elaboración de una red de conceptos geométricos» (Duarte, Guichón y Luaces; 2014:28).
Esta vez centraremos la mirada en diferentes construcciones de dos figuras conocidas: la mediatriz de un segmento y la bisectriz de un ángulo. Justificaremos las clásicas construcciones con regla y compás reconociendo en ellas las propiedades de las figuras, y a partir de estas buscaremos construcciones alternativas. Analizaremos también vínculos entre los procedimientos de construcción y la elaboración de nuevos conocimientos sobre las figuras.
Te invitamos a que nos acompañes durante la lectura del artículo con lápiz, papel, regla, escuadra y compás a mano para que completes algunas de las construcciones que proponemos, elabores figuras de análisis cuando lo creas necesario y pongas a prueba las afirmaciones que consideres dudosas.

Publicado en Revista 129

En el número anterior reseñamos las diferentes formas de encarar la actividad con este material y redondeamos el aporte sobre bloques lógicos con una sugerencia de trabajo para cuadro de doble entrada.

Insistimos en marcar que este aporte es la descripción de una forma práctica de trabajar activamente con estos cuerpos y que cada maestro, con su experiencia lo enriquecerá.

 

Página 1 de 4